

Workshop on Greenhouse Gas Emission Mitigation through Changing Urban Lifestyles toward Water and Energy Saving in Da Nang

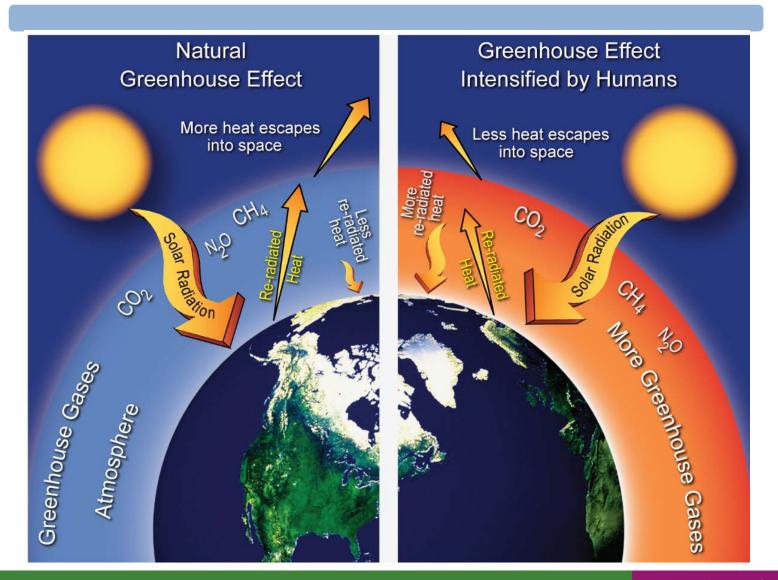
International Experience on Greenhouse Gas Emission Reduction

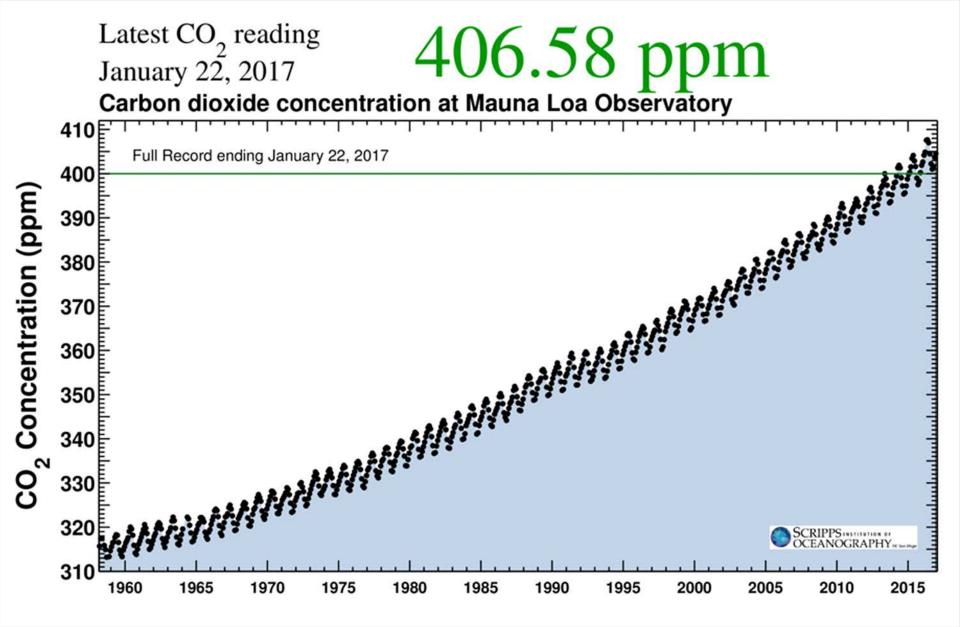
from Water and Energy End-Use Saving -

Good Practices and Lessons Learned

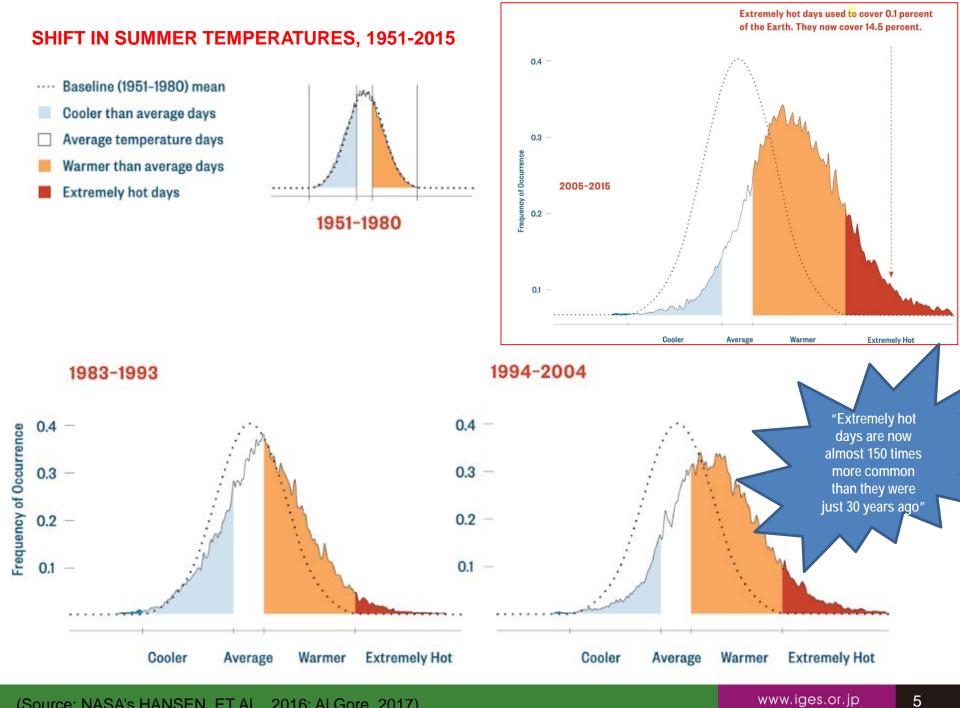
Pham Ngoc Bao, Ph.D Senior Water and Sanitation Specialist Institute for Global Environmental Strategies (IGES) Email: ngoc-bao@iges.or.jp

ADDRESSING THE CRITICAL QUESTIONS BEFORE ACTIONS

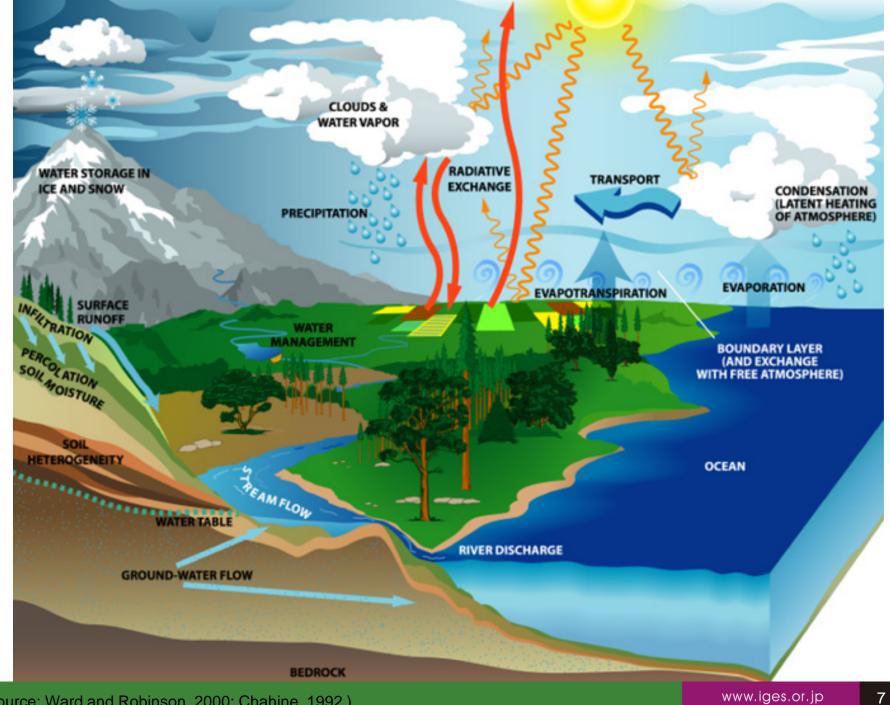

- ✓ Why GHG emission reduction is necessary?
- ✓ Is there any interlinkage between lifestyles CHANGE, water-energy saving practices, and GHG emission reduction?

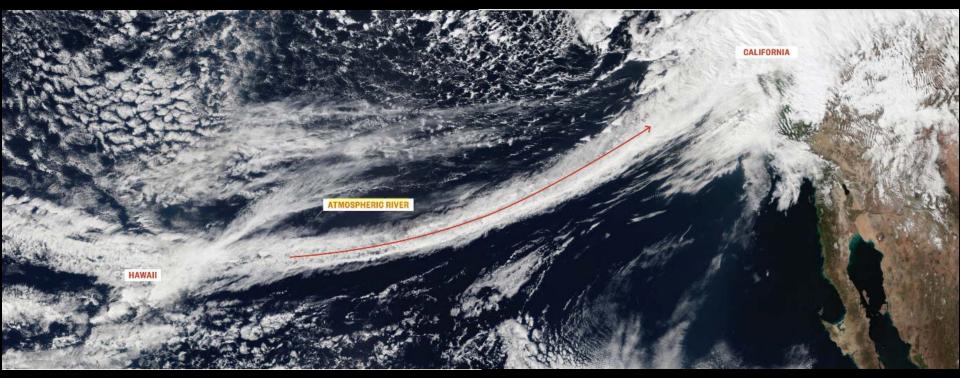

1. <u>Must we change?</u>

2.Can we change?


3.Will we change?

Why GHG emission reduction is necessary?


"Concentrations of carbon dioxide in Earth's atmosphere have risen rapidly since measurements began nearly 60 years ago, climbing from 316 parts per million (ppm) in 1958 to more than 400 ppm today" (Scripps Institution of Oceanography, 2017)



(Source: NASA's HANSEN, ET AL., 2016; Al Gore, 2017)

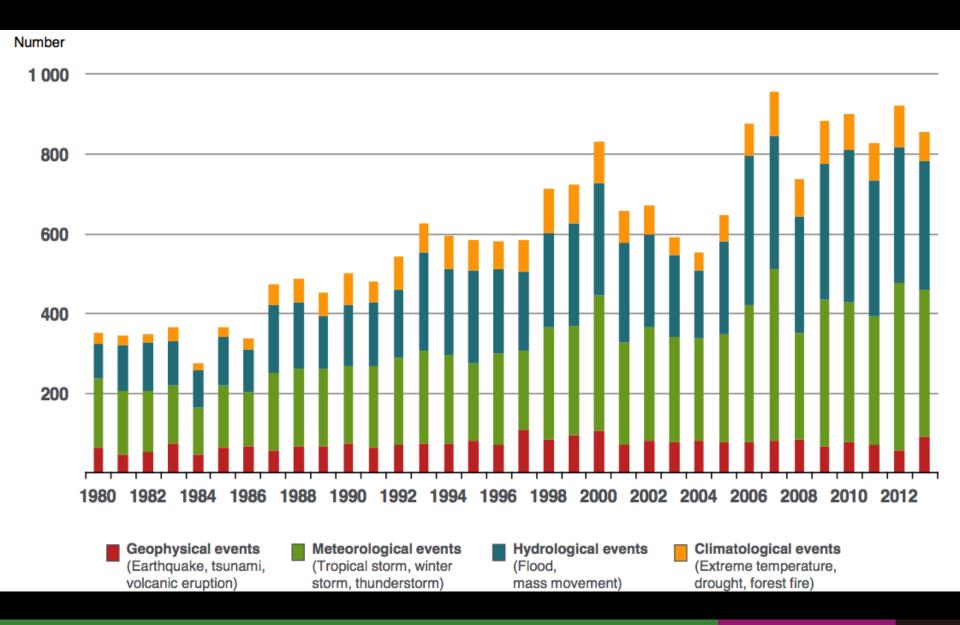
"A Farewell to Ice"

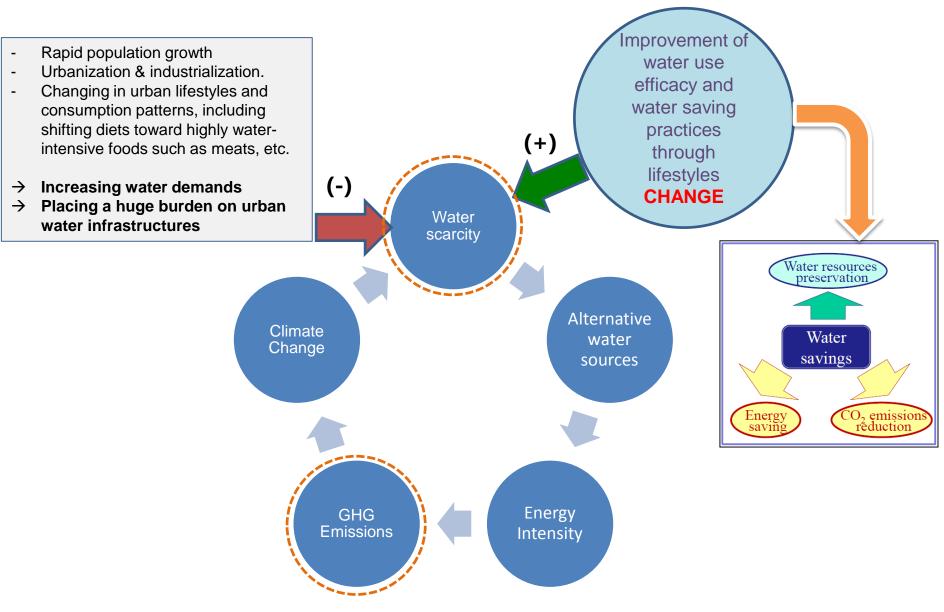
An atmospheric river seen from the NOAA/NASA Suomi NPP satellite, Pacific Ocean, 2017

They are calling these events rain bombs.

An intense downpour drenches the American southwest.

Phoenix, Arizona July 18, 2016


Historical drought in the Mekong delta of Vietnam in 2016


(Source: Enternews, 2016)

Heavy rain caused severe flooding in Hanoi in 2016

"Prediction of our future can no longer be based on our past"

Interlinkages among urban lifestyle CHANGES, water-energy saving, and GHG emission reduction

Energy use intensity based on various water supply sources/stages in different regions.

Water supply sources/stages	Region	Purpose	Energy use	References
Groundwater extraction	California, USA Central Arizona, USA USA	Groundwater pumping Lifting groundwater Whole water supply	0.14–0.69 kW h/m ³ 3.3 kW h/m ³ 1.02 kW h/m ³	Plappally and Lienhard (2012) Perrone et al. (2011) Sattenspiel and Wilson (2009)
	USA Chino Basin, Southern California Australia	system Groundwater pumping Groundwater pumping Groundwater pumping	0.18–0.49 kW h/m ³ 0.79 kW h/m ³ 0.48–0.53 kW h/m ³	EPRI (2002) Wilkinson, 2005 Rocheta and Pearson (2011)
Surface water extraction/pumping	Western China	Pumping of water over 450 km pipeline	$7.1 imes 10^9$ kW h/annum ^a	Marsh, 2008
	Ontario, Canada Sydney, Australia	Pumping Water supply pumping for 2006/07	$5.55\times 10^9~kWh/annum^a$ 0.92 kW h/m^3	Maas, 2010 Kenway et al., 2008
Water distribu- tion/conveyance	Northern California Southern California		0.04 kW h/m ³ 2.4 kW h/m ³	CEC (2005) CEC (2005)
Water treatment	Australia USA Northern and Southern California, USA Sydney, Australia	Raw water treatment Raw water treatment Raw water treatment Raw water treatment for 2006/07	0.1–0.6 kW h/m ³ 0.027–4.32 kW h/m ³ 0.027 kW h/m ³ 0.1 kW h/m ³	Marsh, 2008 Sattenspiel and Wilson (2009) CEC (2005) Kenway et al. (2008)
End Use	Ontario, Canada USA California Australia	Residential heating US residential end use For the year 2006/07 Residential end use	24.6 kW hkW h/m ³ 208.38 kW h/m ³ 13,528 kW h/annum ^a 12.77 × 10 ⁹ kW h/annum ^a	Maas (2010) Sattenspiel and Wilson (2009) CEC (2005) Kenway et al. (2008)
Wastewater treatment (WWT)	Australia California Sydney, Australia	Advanced WWT WWT energy use in 2001 WWT energy use in 2006/07	0.8–1.5 kW h/m ³ 2012 × 10 ⁶ kW h/annum ^a 0.38 kW h/m ³	Marsh (2008) CEC (2005) Kenway et al. (2008)
Desalination	General General Australia	Seawater desalination Seawater desalination Seawater desalination	3–5 kW h/m ³ 3.73 kW h/m ³ 4 kW h/m ³	Marsh (2008) Sattenspiel and Wilson (2009) Rocheta and Pearson (2011)
Recycled water	Central Arizona, USA General	Recycling wastewater Recycling wastewater	3.6 kW h/m ³ 0.3 kW h/m ³	Perrone et al. (2011) Sattenspiel and Wilson (2009)

(Source: (Nair et al. 2014)

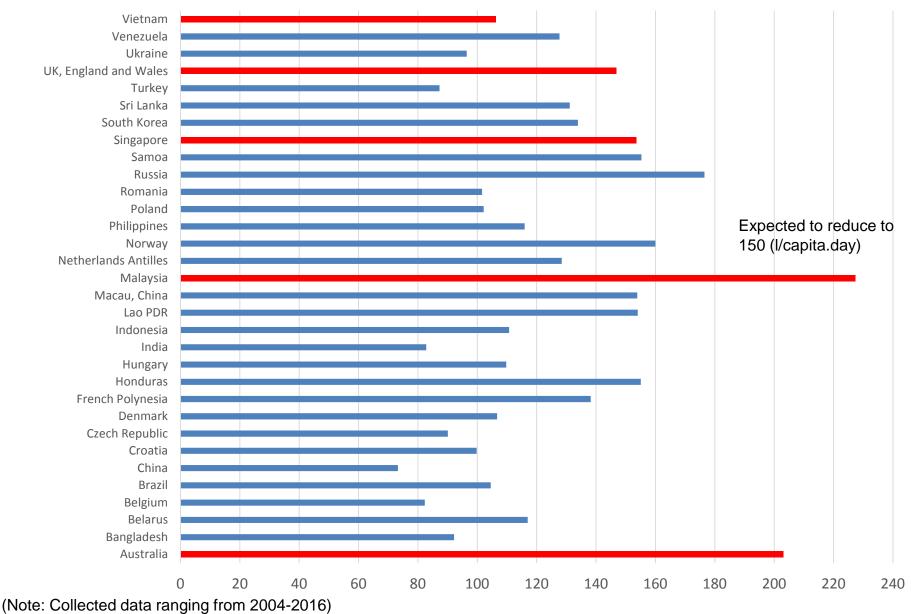
ADDRESSING THE CRITICAL QUESTIONS BEFORE ACTIONS

- ✓ Why GHG emission reduction is necessary?
- ✓ Is there any interlinkage between lifestyles CHANGE, water-energy saving practices, and GHG emission reduction?

1. Must we change? "YES"

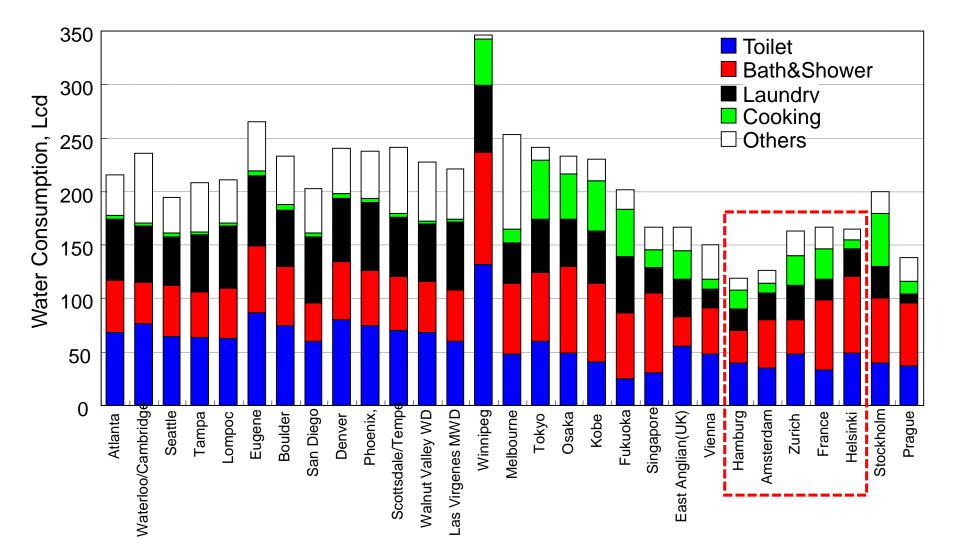
2.<u>Can we change?</u>

3.Will we change?

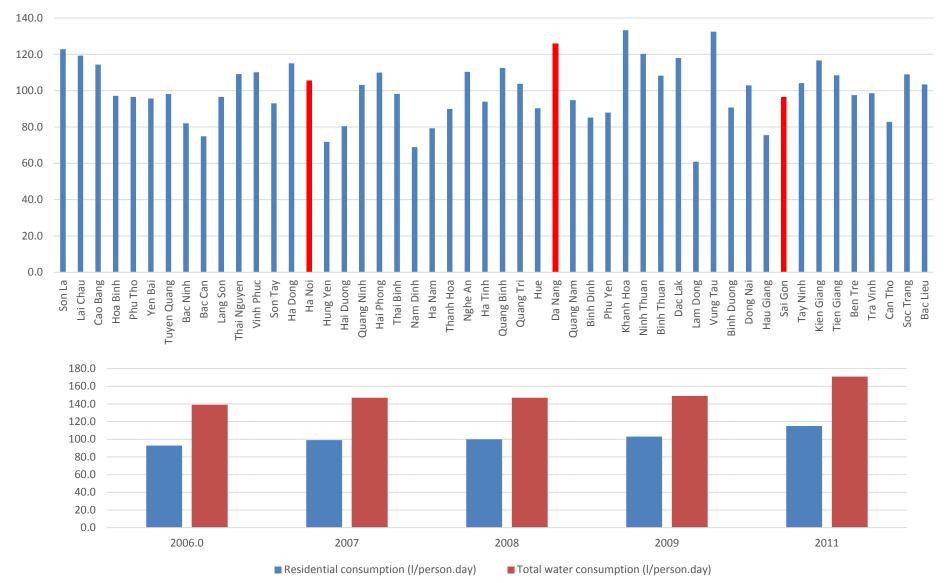

1a	Australia	Water Efficiency Labelling Scheme (indoor use)	7	Malaysia	Guidelines Voluntary WEPLS
1b	Australia	Smart Approved Watermark (outdoor use)	8	New Zealand	Water Efficiency Labelling Scheme
2	Canada	WaterSense	9	Portugal	National Plan for Efficient Water Use
3	China	Water Conservation Certification	10	Singapore	Water Efficiency Labelling Scheme
4	Europe	European Water Label	11	UAE	Emirates Authority for Standardisation and Metrology
5	Hong Kong	Voluntary Water Efficiency Labelling	12	United Kingdom	ECA Water Technology List
6	India	Water Efficient Products-India	13	United States	WaterSense

Water Efficiency Schemes recognized by World Plumbing Council

Water Efficiency Schemes recognized by World Plumbing Council

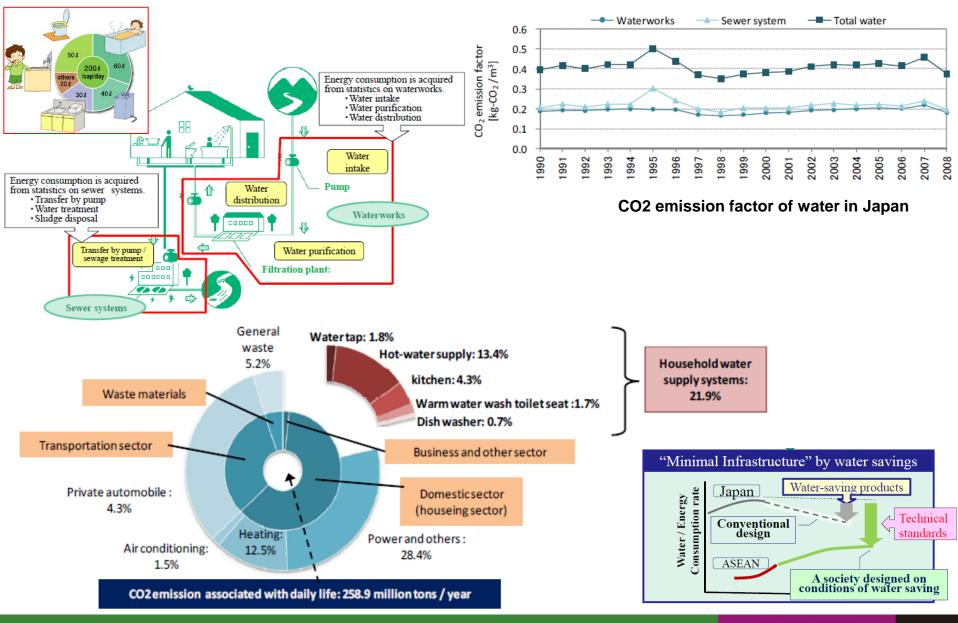

No.	Country/Area	Scheme	Scope
1a	Australia	Water Efficiency Labelling Scheme (indoor use)	Mandatory
1b	Australia	Smart Approved Watermark (outdoor use)	Voluntary
2	Canada	WaterSense	Voluntary
3	China	Water Conservation Certification	Voluntary
4	Europe	European Water Label	Voluntary
5	Hong Kong	Voluntary Water Efficiency Labelling	Voluntary
6	India	Water Efficient Products-India	Voluntary
7	Malaysia	Guidelines Voluntary WEPLS	Voluntary
8	New Zealand	Water Efficiency Labelling Scheme	Mandatory
9	Portugal	National Plan for Efficient Water Use	Voluntary
10	Singapore	Water Efficiency Labelling Scheme	Mandatory
11	UAE	Emirates Authority for Standardisation and Metrology (ESMA)	Mandatory
12	United Kingdom	ECA Water Technology List	Voluntary
13	United States	WaterSense	Mandatory

Residential Water Consumption per capita from Selected Countries in the World (I/capita.day)

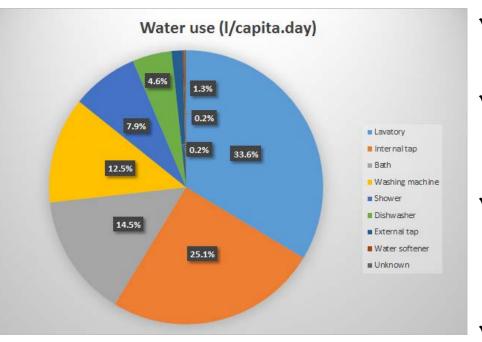


(Source: IBNET, 2017)

MICRO-COMPONENTS SURVEY ON RESIDENTIAL IN-HOUSE WATER CONSUMPTION

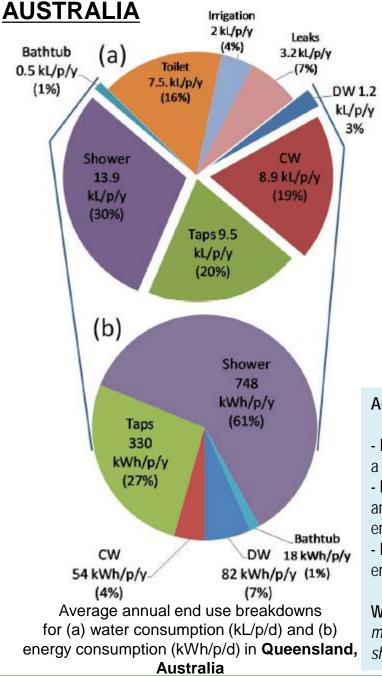


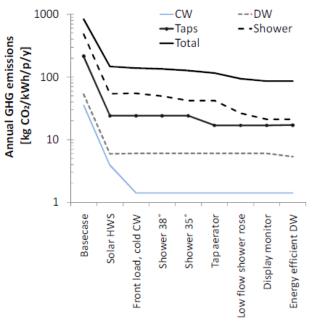
Residential Water Consumption per capita in Vietnam (I/capita.day)



JAPAN

Breakdown of CO2 emissions from residential houses & water works in Japan




Estimation of Carbon Dioxide Emission Savings Potential of Household Water Use Reduction in the UK

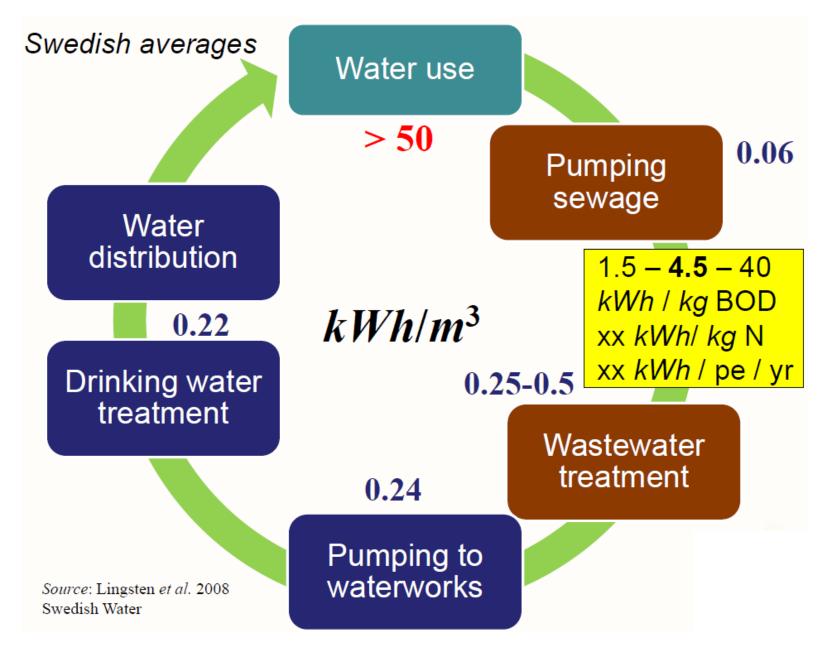
Household water use by activity, in England and Wales for 2007

- Average UK water usage is 55,121 l/capita.year (or about 151 l/capita.day)
- ✓ The supply of this volume of water and its subsequent treatment by the water companies is equivalent to just 38.6 kg CO₂/capita.year.
- ✓ Heating water within the household using electricity requires 5,036 kWh/capita.year, equivalent to a further 2,830 t CO₂/capita.year with 57% of energy associated with use of heated tap water.
- ✓ Water efficient appliances and the careful use of heated water in the home could reduce average household water use from 151 to 73 (I/capita.day) as well as the volume of water required to be heated thereby reducing related emissions by 58% or 1,662 kg CO₂/capita.year, where electricity is used.

Intervention scenario

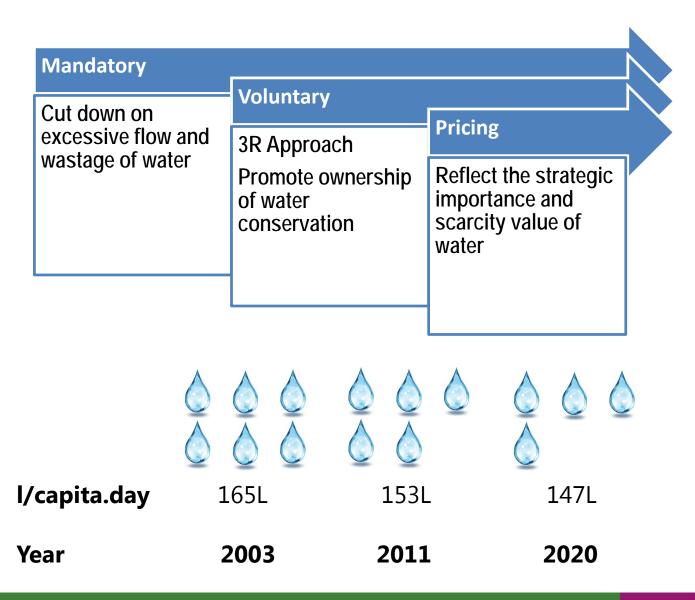
Impact of various energy and water efficient intervention scenarios on GHG emissions

Adoption of water-efficient technologies can markedly reduce energy consumption:


- Replacing an electric hot water system with a solar hot water system can achieve around a 40% reduction in energy consumption and carbon emissions.

- Installing a low-flow shower rose can provide potential total savings of nearly 40% of annual total household water consumption and at least 60% energy savings.

- Front loading, cold tap only connected clothes washers can potentially reduce water and energy consumption by up to 30% and 90%, respectively.


Water saving behaviours, such as having a shorter shower, should be adopted to maximise the effectiveness of water-efficient technologies. Reducing the temperature of shower hot water from 40 to 37° C can result in energy savings of at least 10%.

SWEDEN

SINGAPORE

Water Conservation Strategy

SINGAPORE

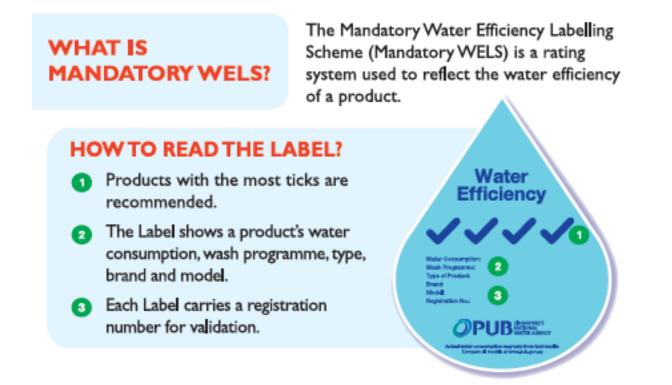
Water Efficiency Labelling Scheme

For consumers

The Water Efficiency Labelling Scheme (WELS) was launched on 31 Oct 2006 as part of the 10-Litre Challenge. It is a voluntary scheme showing how efficient fittings and appliances are.

On 1 July 2009, the Mandatory Water Efficiency Labelling Scheme (MWELS) was introduced. It is a grading system of 0/1/2/3 ticks to reflect the water efficiency of a product

The products under this scheme include:


Mandatory WELS
1) Shower Taps and Mixers
2) Basin Taps and Mixers
3) Sink/Bib Taps and Mixers
4) Dual-Flush Low Capacity Flushing Cisterns
5) Urinal flush valves and Waterless Urinals
6) Clothes Washing Machines

Voluntary WELS 1) Showerheads

SINGAPORE

For Supplier/Manufacturers

It is mandatory for all importers, parallel importers, retailers, manufacturers, suppliers and distributors, of water fittings/appliances to register their products under the Water Efficient Labelling Scheme.

	Droducto /Fittinger	Flowrate / Flush Capacity Requirements			1
	Products/Fittings	1-Tick	2-Tick	3-Tick	
	Under Mano	latory WELS			
1	Shower Taps & Mixer	> 7 to 9 litres/min	> 5 to 7 litres/min	5 litres/min or less	
	Savings	11%	33%	44%	
2	Basin Taps & Mixers	> 4 to 6 litres/min	> 2 to 4 litres/min	2 litres/min or less	
	Savings	17%	50%	67%	1
3	Sink/Bib Taps & Mixers	> 6 to 8 litres/min	> 4 to 6 litres/min	4 litres/min or less	
	Savings	13%	38%	50%	1
4	Flushing Cisterns ** +* (Per Flush)	Dual Flush > 4 to 4.5 litres (full flush) > 2.5 to 3 litres (reduce flush)	Dual Flush > 3.5 to 4.0 litres (full flush) > 2.5 to 3 litres (reduce flush)	Dual Flush 3.5 litres or less ⁽⁺⁺⁾ (full flush) 2.5 litres or less (reduce flush)	
	Savings	NA	12%	18%	
5	Urinal Flush Valve & Waterless Urinals (Per Flush)	> 1 to 1.5 litres	> 0.5 to 1 litres	0.5 litres or less(**) or waterless urinals	
	Savings	NA	40%	60%	

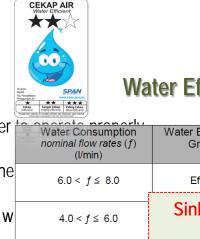
	Under Mandatory WELS						
	Clothes Washing Machines		Wash	Volume			
	(Per Wash load)	1-Tick	2-Tick	3-Tick	4-Tick		
6		NA	> 9 to 12 litres/kg	> 9 to 6 litres/kg	6 litres/Kg or less		
	Savings	NA	NA	29%	43%		

	Under Voluntary WELS							
	Products/Fittings	1-Tick	2-Tick	3-Tick				
7	Showerheads	> 7 to 9 litres/min	> 5 to 7 litres/min	5 litres/min or less				
	Savings	11%	33%	44%				

5 Key Strategies for Sustainable Water Supply Towards 2050

DEMAND Management	SUPPLY Management
 Public Education & Awareness Alert public on water issues Cultivate water saving society Promote sustainable development Focus on primary and secondary students 	 4. Holistic Water Supply Management Protect water catchments Manage NRW Upgrade water supply infrastructure to mitigate higher risks due to climate change
 2. Raise the Value of Water Tariffs and Water Consumption Surcharge to reduce consumption "More you use, more you pay" 	 5. Additional Raw Water Resources Surface water Rainwater harvesting Water recycling Desalination
 3. WSDs: Water Saving Devices Building by-law: mandatory for new projects Incentives for retro-fitting in existing buildings 	

WATER SAVING TIPS IN MALAYSIA


Water Saving Tips Outdoor (LWAN)

✓ Use a garden watering can or a bucket to water your lawn or garden instead of a hose.

- ✓ Use a bucket to wash your car and avoid using a hose.
- ✓ Avoid using a mist fan for cooling as it consumes a lot of water if used over a period of time.
- Consider replacing some turf area with low water use plants and ornamental grass. They are easier to maintain than turf, looks beautiful, and require far less water.
- ✓ Group plants based on its watering needs. Creating "watering zones" in your garden will allow you to give each plant the water it requires not too much or too little.
- ✓ Water the lawn or your plants early morning or late evening to avoid water loss through evaporation from the heat.
- ✓ Water your lawn only when it really needs it.
- \checkmark Use a broom not a hose to clean the driveways and sidewalks.

Water Saving Tips At Home (KITCHEN)

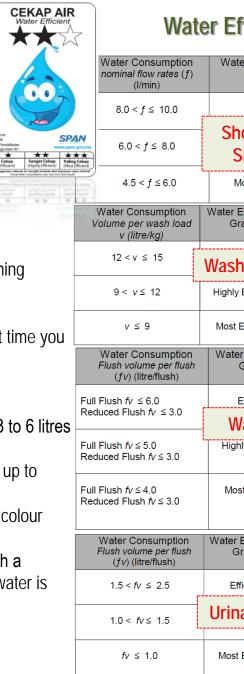
- ✓ Minimize use of kitchen sink garbage disposal units as it requires a lot of water ↓
- \checkmark Think ahead! Don't use water to defrost frozen foods, instead leave them in the
- \checkmark Wash vegetables, fruits or food in the sink filled with water instead of running w
- ✓ Install a low-flow faucet aerator, which can cut water use in half. Water saved: 4

Water Efficiency Label

a anarata proparly			
Water Consumption nominal flow rates (f) (l/min)	Water Efficiency Grade	Rating	Symbol on Label
6.0 < <i>f</i> ≤ 8.0	Efficient	1*	*
4.0 < <i>f</i> ≤ 6.0	Sink Taps and Mixers		**
2.5 < <i>f</i> ≤ 4.0	Most Efficient	3*	***

WATER SAVING TIPS IN MALAYSIA

Water Saving Tips At Home (BATHROOM)

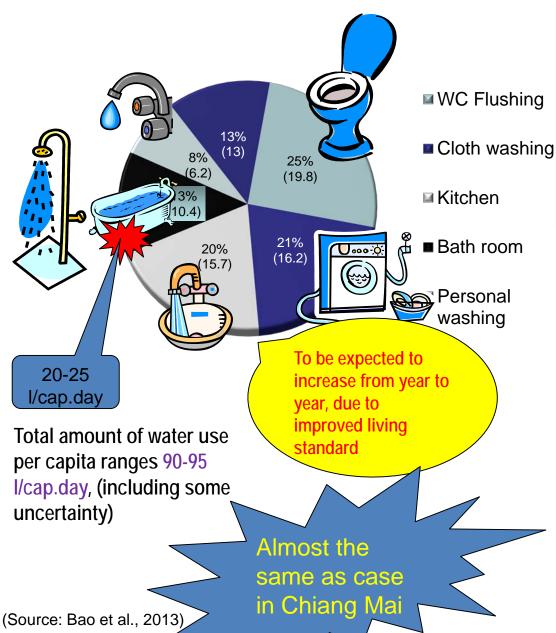

- \checkmark Take shorter showers of 5 minutes per day as it could save up to 400 litres in a week.
- \checkmark Don't let the water run while washing your face, shaving or brushing
- ✓ Turn off the shower while lathering or shampooing.
- ✓ Install water efficient taps, water closets and shower heads.

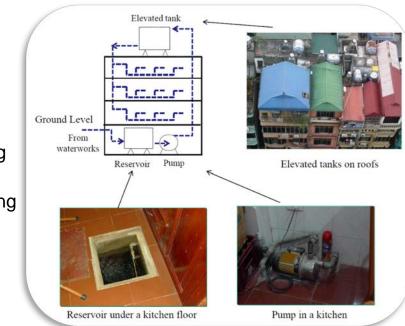
Water Saving Tips At Home (LAUNDRY)

- ✓ Use a front-loading washing machine compared to a top loading washing machine because it can save water and energy.
- \checkmark Use the washing machine only with a full load to save water.
- ✓ Consider purchasing a water-saving washing machine model the next time you buy a new washing machine as it can save 40 to 65 litres per load.

Water Saving Tips At Home (TOILET)

- ✓ Replace single flush with dual flush mechanism because it can save 3 to 6 litres of water per flush.
- ✓ Perform regular inspections to identify leaks as toilet leaks can waste up to 100,000 litres of water in a year.
- ✓ Check for toilet tank leaks by adding food colouring to the tank. If the colour shows up in the bowl without flushing, it's confirmed there's a leak.
- ✓ Don't use the toilet as an ashtray or wastebasket. Every time you flush a cigarette butt, facial tissue or other small bits of trash, 3 to 6 litres of water is wasted.




Water Efficiency Label

~	1				
		Water Consumption nominal flow rates (f) (I/min)	Water Efficiend Grade	cy Rating	Symbol on Label
		8.0 < <i>f</i> ≤ 10.0	Efficient	Efficient 1 ★	
	gov.my	6.0 < <i>f</i> ≤ 8.0	Shower T Shower		**
san sj	an makenal	$4.5 < f \le 6.0$	Most Efficien	t 3★	***
		Water Consumption /olume per wash load v (litre/kg)	Water Efficiency Grade	Rating	Symbol on Label
		12 < v ≤ 15	Washing Ma	achine	*
		9< v≤ 12	Highly Efficient	2*	**
		<i>v</i> ≤ 9	Most Efficient	3*	* * *
	Water Consumption Flush volume per flush (fv) (litre/flush)		Water Efficiency Rating Grade		Symbol on Label
5		Flush $f_V \le 6.0$ Juced Flush $f_V \le 3.0$	Efficient 1*		*
,		Flush $f_V \le 5.0$ duced Flush $f_V \le 3.0$	Highly Efficient	2*	**
		Flush fv ≤ 4.0 duced Flush fv ≤ 3.0	Most Efficient	3*	***
		Water Consumption Flush volume per flush (fv) (litre/flush)	Water Efficiency Grade	Rating	Symbol on Label
$1.5 < fv \le 2.5$		$1.5 < f_V \le 2.5$	Efficient	1*	*
		1.0 < <i>f</i> v ≤ 1.5	Urinal equi	pment	**
		$fv \leq 1.0$	Most Efficient	3*	***

VIETNAM

Residential Indoor Uses of Water in Hanoi

Indoor water supply system in Vietnam

Process	Emission Factor (kg-CO ₂ /m ³)
Waterworks system	0.23
Sewer system	0.16
Water supply system in a house	0.32

Note: CO2 emission factor of electricity: 0.576 kg-CO2/kw·h.

CO2 emission factor of water in Vietnam

→ The annual electricity consumption per capita in Vietnam is around 872 kWh, and energy consumption by water pumps accounts for about 3%.

32

(Source: Otani et al., 2015)

Available Water-Saving Appliances in Markets

Box 1. Examples of water-saving shower heads and faucet aerator water saving device

Efficient shower heads operate by mixing water flow with an air jet. Whereas a fiveminute shower with a normal shower head can use up to 50-100 liters of water, a water efficient shower head consumes a modest 35 liters.

Meanwhile, many available faucet aerator water saving device on the market can **save up to 50% of water use**

Roughly Estimation of Residential Water-Energy Saving Potential in Da Nang

Population	125 (I/capita.day)	100 (I/capita.day)	Water Saving Potential (m3/day)	Energy saving potential (kWh/day)	GHG emission reduction potential (kg CO2/day)
1 million	125,000 (m3/day)	100,000 (m3/day)	25,000	29,427	16,950
1.2 million	150,000 (m3/day)	120,000 (m3/day)	30,000	35,313	20,340
1.4 million	175,000 (m3/day)	140,000 (m3/day)	35,000	41,198	23,730
1.6 million (2020)	200,000 (m3/day)	160,000 (m3/day)	40,000	47,083	27,120
1.8 million	225,000 (m3/day)	180,000 (m3/day)	45,000	52,969	30,510
2.0 million	250,000 (m3/day)	200,000 (m3/day)	50,000	58,854	33,900
2.2 million	275,000(m3/day	220,000 (m3/day)	55,000	64,740	37,290
2.4 million	300,000 (m3/day)	240,000 (m3/day)	60,000	70,625	40,680
2.5 million (2030)	312,500 (m3/day)	250,000 (m3/day)	62,500	73,568	42,375

ADDRESSING THE CRITICAL QUESTIONS BEFORE ACTIONS

- ✓ Why GHG emission reduction is necessary?
- ✓ Is there any interlinkage between lifestyles CHANGE, and water-energy saving practices, as well as GHG emission reduction?

1. Must we change? "YES"

2.Can we change? "YES"

3.Will we change?

3. Will we change?

Thank you very much for your attention.

For further information, please contact:

Pham Ngoc Bao, Ph.D Senior Water and Sanitation Specialist Institute for Global Environmental Strategies (IGES) 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115 Japan TEL : + 81-46-855-3880 (ext.3093) E-mail : ngoc-bao@iges.or.jp